Immunoglobulins

Learning objectives

To understand:

- General Structure of Immunoglobulin
- Types of Immunoglobulins
- Structural variations of different immunoglobulins
- Function of different immunoglobulins
- Clinical significance of Immunoglobulins

Immunity =
 resistance of a
 host to pathogens
 and their toxic
 effects

Immunity

Types of immunity

Immune response

Immune response =
 collective and
 coordinated response
 to the introduction of
 foreign substances in
 an individual
 mediated by the cells
 and molecules of the
 immune system

Immunoglobulins

Immunoglobulins are:

- glycoprotein molecules,
- function as antibodies
- produced by plasma cells
- in response to an immunogen.

Immunoglobulins

The immunoglobulins derive their name from the finding that they migrate in the region of globulins when antibodycontaining serum is placed in an electrical field.

Structural characteristics

A. Heavy and Light Chains

- All immunoglobulins have a four chain structure as their basic unit. Light
- They are composed of two identical light chains (23kD) and two identical heavy chains (50-70kD)

B. Disulfide bonds

- Inter-chain disulfide bonds The heavy and light chains and the two heavy chains are held together by inter-chain disulfide bonds and by non-covalent interactions.
- The number of inter-chain disulfide bonds varies among different immunoglobulin molecules.
- Intra-chain disulfide bonds Within each of the polypeptide chains there are also intra-chain disulfide bonds.

Interchain disulphide bonds

C. Variable (V) and Constant (C) Regions

- Both the heavy and light chain can be divided into two regions based on variability in the amino acid sequences. These are the
- Light Chain V_L (110 amino acids) and C_L (110 amino acids)
- Heavy Chain V_H (110 amino acids) and C_H (330-440 amino acids)

D. Hinge Region

- This is the region at which the arms of the antibody molecule form a Y.
- It is called the hinge region because there is some flexibility in the molecule at this point.

E. Domains

- Three dimensional images
 of the immunoglobulin
 molecule show that it is not
 a straight molecule rather, it
 is folded into globular
 regions each of which
 contains an intra-chain
 disulfide bond.
- These regions are called domains.
- 1. Light Chain Domains V_L and C_L
- 2. Heavy Chain Domains V_H, C_{H1},CH₂C_{H3} (or C_{H4})

F. Oligosaccharides

- Carbohydrates are attached to the C_{H2} domain in most immunoglobulins.
- However, in some cases carbohydrates may also be attached at other locations.

Basic structure of immunoglobulins

Immunoglobulin fragments: structure/function relationships

Immunoglobulin fragments produced by proteolytic digestion –

A. Fab

Digestion with papain breaks the immunoglobulin molecule in the hinge region before the H-H inter-chain disulfide bond.

This results in the formation of two identical fragments that contain the light chain and the V_H and C_{H1} domains of the heavy chain.

Immunoglobulin fragments by Papain

- Fab -These fragments are called the Fab fragments because they contain the antigen binding sites of the antibody.
- Each Fab fragment is monovalent whereas the original molecule was divalent.
- The combining site of the antibody is created by both $V_{\rm H}$ and $V_{\rm L}$.

Immunoglobulin fragments by Papain

- B. Fc
 Digestion with papain also produces a fragment that contains the remainder of the two heavy chains each containing a C_{H2} and C_{H3} domain.
- This fragment was called Fc because it was easily crystallized.

Structurefunction relationship

Antigen binding function of Immunoglobulins is carried out by Fab part,

Effector functions -The effector functions are mediated by Fc part of the molecule.

Different functions are mediated by the different domains in this fragment.

General functions of immunoglobulins

- · A. Antigen binding
- Antigen binding by antibodies is the primary function of antibodies and can result in protection of the host.
- · Each immunoglobulin binds to a specific antigenic determinant.

Immunoglobulins: A. Structure, B. Antigen binding site

Valency of antibody

- The valency of antibody refers to the number of antigenic determinants that an individual antibody molecule can bind.
- The valency of all antibodies is at least two and in some instances more.

B. Effector Functions

Complement fixation

Binding to various cell types

Placental transfer

Opsonization

General functions of Immunoglobulins

Immunoglobulin Fragments: Structure/Function Relationships

Binding to various cell types

- Phagocytic cells, lymphocytes, platelets, mast cells, and basophils have receptors that bind immunoglobulins.
- This binding can activate the cells to perform some function.

Bacterium covered with Antibody receptor IgG antibody Macrophage

Functions of Immunoglobulins

- Some immunoglobulins also bind to receptors on placental trophoblasts, which results in transfer of the immunoglobulin across the placenta.
- As a result, the transferred maternal antibodies provide immunity to the fetus and newborn.

Immunoglobulin classes

- The immunoglobulins can be divided into five different classes, based on differences in the amino acid sequences in the constant region of the heavy chains.
- 1. IgG Gamma heavy chains
- 2. IgM Mu heavy chains
- 3. IgA Alpha heavy chains
- 4. IgD Delta heavy chains
- 5. IgE Epsilon heavy chains

Immunoglobulin Subclasses

Immunoglobulin G (IgG)-Structure

- All IgG's are monomers (7S immunoglobulin).
- The subclasses differ in the number of disulfide bonds and length of the hinge region.

Immunoglobulin G (IgG)-Properties

Major Ig in serum

Major Ig in extravascular spaces

Only Ig that crosses placenta

Complement fixation

Opsonization

Opsonization

- The term opsonin is used to describe substances that enhance phagocytosis.
- · IgG is a good opsonin.
- The antibody prepares the antigen for killing by the phagocytic cells.
- Macrophages, monocytes and neutrophils and some lymphocytes have Fc receptors for the Fc region of IgG.
- A consequence of binding to the Fc receptors on such cells is that the cells can now internalize the antigen better.

IgG- Function

- Secreted in high quantities in secondary exposures
- Cross the placenta
- Major functions / applications
 - neutralize microbes and toxins
 - opsonize antigens for phagocytosis
 - activate the complement
 - protect the newborn

- 4-fold rise or fall indicates active infection
- A single positive sample indicates past exposure

IgM- Structure

- IgM normally exists as a pentamer (19S immunoglobulin) but it can also exist as a monomer.
- In the pentameric form all heavy chains are identical and all light chains are identical.
- The valence is theoretically 10.

IgM-Properties

Third most common serum Ig.

First Ig to be made by the fetus

First Ig to be made by a virgin B cells when stimulated by antigen

IgM-Properties (contd.) A good complement fixing lg.

Very efficient in leading to the lysis of microorganisms.

A good agglutinating Ig.

IgM

- Secreted initially during primary infection
- · Cannot cross the placenta
- Major functions / applications
 - secreted first during primary exposure
 - activates the complement
 - used as a marker of recent infection

- Presence in newborn means infection
- •Single positive sample in serum or CSF indicates recent or active infection
- Used to detect early phase of infection

Ig A- Structure

- · Serum IgA is a monomer,
- IgA found in secretions(slgA)is a dimer.
- J chain is associated with dimeric form.
- A secretory piece or T piece is also associated with secretory Ig A.
- slgA is sometimes referred to as 11S immunoglobulin

IgD-Structure and Properties

1. Structure

IgD exists only as a monomer.

2. Properties

- a) IgD is found in low levels in serum; its role in serum is uncertain.
- b) IgD is primarily found on B cell surfaces where it functions as a receptor for antigen.
- c) IgD does not bind complement

 IgE exists as a monomer and has an extra domain in the constant region.

IgE-Structure

IgE

- Mediates type I hypersensitivity
- Monomeric
- Major functions / applications
 - associated with anaphylaxis
 - plays a role in immunity to helminthic parasites

Serodiagnosis of infectious and non infectious allergies (e.g., allergic bronchopulmonary aspergillosis, parasitic diseases)

Summary

- Immunoglobulins are glycoproteins
- There are five immunoglobulins based on variations in the heavy chain.
- IgG is the only antibody for placental transfer of immunity.
- Ig M is the most potent agglutinating antibody.
- Ig A acts as a mucosal barrier.
- IgE is the antibody for allergies.
- IgD and IgM are present on the surface of B lymphocytes.

Functions of Immunoglobulins- an overview

