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I. INTRODUCTION

A significant portion of this book is devoted to the
concepts involved in formulating drug products in their
various forms. Physical, chemical, and biological
properties all must be given due consideration in the
selection of components and processing steps for that
dosage form. The final product must be one that meets
not only the requirements placed on it from a bioa-
vailability standpoint, but also the practical mass pro-
duction criteria of process and product reproducibility.
In the current regulatory climate, formulation and
process justification is a requirement for preapproval
inspections for all new drug applications. In fact, de-
velopment reports for both formulation and process are
reviewed during these inspections. It is in the best in-
terest of the pharmaceutical scientist to understand the
theoretical formulation and target processing para-
meters, as well as the ranges for each excipient and
processing parameter. Optimization techniques provide
both a depth of understanding and an ability to explore
and defend ranges for formulation and processing
factors. With a rational approach to the selection of the
several excipients and manufacturing steps for a given
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product, one qualitatively selects a formulation. It is at
this point that optimization can become a useful tool to
quantitate a formulation that has been qualitatively
determined. Optimization is not a screening technique.

The word “optimize” is defined as follows: to make
as perfect, effective, or functional as possible [1]. The
last phrase, “‘as possible,” leads one immediately into
the area of decisions making, since one might ask: (a)
perfect by whose definition; (b) for what character-
istics; and (c¢) under what conditions? The term ‘““op-
timization” is often used in pharmacy relative to
formulation and to processing, and one will find it in
the literature referring to any study of the formula. In
developmental projects, one generally experiments by a
series of logical steps, carefully controlling the vari-
ables and changing one at a time until a satisfactory
system is produced. If the experimenter had sufficient
help or sufficient time, he or she would eventually
perfect the formulation, but under the circumstances
the ““best” one is often simply the last one prepared. It
is satisfactory, but how close is it to the optimum, and
how does the experimenter know?

No matter how rationally designed, the trial-and-
error method can be improved upon. It is the purpose



of this chapter to discuss the general principles behind
the techniques of optimization and to review the spe-
cific techniques that have been applied to pharmaceu-
tical systems.

II. OPTIMIZATION PARAMETERS
A. Problem Types

There are two general types of optimization problem:
constrained and unconstrained. Constraints are re-
strictions placed on the system by physical limitations
or perhaps by simple practicality (e.g., economic con-
siderations). In unconstrained optimization problems
there are no restrictions. For a given pharmaceutical
system one might wish to make the hardest tablet
possible. The constrained problem, on the other hand,
would be stated: make the hardest tablet possible, but
it must disintegrate in less than 15 minutes.

Within the realm of physical reality, and most im-
portant in pharmaceutical systems, the unconstrained
optimization problem is almost nonexistent. There are
always restrictions that the formulator wishes to place
or must place on a system, and in pharmaceuticals,
many of these restrictions are in competition. For ex-
ample, it is unreasonable to assume, as just described,
that the hardest tablet possible would also have the
lowest compression and ejection forces and the fastest
disintegration time and dissolution profile. It is some-
times necessary to trade off properties, that is, to
sacrifice one characteristic for another. Thus, the pri-
mary objective may not be to optimize absolutely (i.e.,
a maxima or minima), but to realize an overall pre
selected or desired result for each characteristic or
parameter. Drug products are often developed by
teaching an effective compromise between competing
characteristics to achieve the best formulation and
process within a given set of restrictions.

An additional complication in pharmacy is that
formulations are not usually simple systems. They of-
ten contain many ingredients and variables, which may
interact with one another to produce unexpected, if not
unexplainable, results.

B. Variables

The development of a pharmaceutical formulation and
the associated process usually involves several vari-
ables. Mathematically, they can be divided into two
groups. The independent variables are the formulation
and process variables directly under the control of the
formulator. These might include the level of a given
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Fig. 1 Response surface representing the relationship be-
tween the independent variables X, and X, and the depen-
dent variable Y.

ingredient or the mixing time for a given process step.
The dependent variables are the responses or the
characteristics of the in-progress material or the re-
sulting drug delivery system. These are a direct result
of any change in the formulation or process.

The more variables one has in a given system, the
more complicated becomes the job of optimization.
But regardless of the number of variables, there will be
a relationship between a given response and the in-
dependent variables. Once this relationship is known
for a given response, it defines a response surface, such
as that represented in Fig. 1. It is this surface that must
be evaluated to find the values of the independent
variables, X; and X,, which give the most desirable
level of the response, Y. Any number of independent
variables can be considered; representing more than
two becomes graphically impossible, but mathemati-
cally only more complicated.

1. CLASSIC OPTIMIZATION

Classic optimization techniques result from application
of calculus to the basic problem of finding the max-
imum or minimum of a function. The techniques
themselves have limited application, but they might be
useful for problems that are not too complex and do
not involve more than a few variables. The concept,
however is important.
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Fig. 2 Graphic location of optimum (maximum or mini-
mum).

The curve in Fig. 2 might represent the relationship
between a response Y and a single independent vari-
able X in a hypothetical system, and since we can see
the whole curve, we can pick out the highest point or
lowest, the maximum or minimum. Use of calculus,
however, makes the task of plotting the data or
equation unnecessary. If the relationship, that is, the
equation for Y as a function of X, is available [Eq. (1)]:

Y = f(X) (1)

we can take the first derivative, set it equal to zero, and
solve for X to obtain the maximum or minimum. For
many functions of X, there will be more than one so-
lution when the first derivative is set equal to zero. The
various solutions may all be maxima or minima, or a
mixture of both.

There are also techniques to determine whether we
are dealing with a maximum or a minimum, that is, by
use of the second derivative. And there are techniques
to determine whether we simply have a maximum (one
of several local peaks) or the maximum. Such ap-
proaches are covered in elementary calculus texts and
are well presented relative to optimization in a review
by Cooper and Steinberg [2].

When the relationship for the response Y is given as
a function of two independent variables, X; and X,

Y = (X1, X2) (2)

the problem is slightly more involved. Graphically, there
are contour plots (Fig. 3) on which the axes represent the
two independent variables, X7 and X5, and the contours
(analogous to elevations, as on a contour map) represent
a specific level of Y. Again, we can select an optimum
graphically. Mathematically appropriate manipulations
with partial derivatives of the function can locate the
necessary pair of X values for the optimum.

The situation with multiple variables (any more
than two) becomes graphically impossible. It is still
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Fig. 3 Contour plot. Contours represent values of the de-
pendent variable Y.

possible by mathematics, but very involved, making
use of partial derivatives, matrices, determinants, and
so on. The reader is referred to optimization texts for
further details. Because of the complications involved
and because the classic calculus methods apply basi-
cally to unconstrained problems, more practical
methods are generally used.

IV. STATISTICAL DESIGN

The techniques most widely used for optimization may
be divided into two general categories: one in which
experimentation continues as the optimization study
proceeds, and another in which the experimentation is
completed before the optimization takes place. The
first type is represented by evolutionary operations and
the simplex method, and the second by the more classic
mathematical and search methods. (Each of these is
discussed in Sec. V.)

For the techniques of the second type, it is ne-
cessary that the relation between any dependent
variable and the one or more independent variables
be known. To obtain the necessary relationships,
there are two possible approaches: the theoretical
and the empirical.

If the formulator knows a priori the theoretical
equation for the formulation properties of interest, no
experimentation is necessary. However, much of the
work in pharmaceutics has been in the pursuit of such
relationships, and to our knowledge most have not
been determined. Therefore, it remains the task of the
formulator to generate the relationships between the
variables for the particular formulation and process.

In a text on experimental design, Davis states [3]:

Theoretically, the behavior of chemical reactions, or
for that matter the behavior of any system, is governed



by ascertainable laws, and it should be possible to
determine optimum conditions by applying such laws.
In practice, however, the underlying mechanisms of the
system are frequently so complicated that an empirical
approach is necessary.

To apply the empirical or experimental approach for a
system with a single independent variable, the for-
mulator experiments at several levels, measures the
property of interest, and obtains a relationship, usually
by simple regression analysis or by the least-squares
method. In general, however, there is more than one
important variable, so the experimenter must enter into
the realm of “statistical design of experiments and
multiple linear regression analysis.” Statistical design
and multiple linear regression analysis are separate and
rather large fields, and, again, the reader is referred to
appropriate texts [3—5,40]. The concept of interest to
the pharmacist planning to utilize optimization tech-
niques is that there are methods available for selecting
one’s experimental points so that (a) the entire area of
interest is covered or considered, and (b) analysis of the
results will allow separation of variables (i.e., statistical
analysis can be performed, which allows the experi-
menter to know which variable caused a specific result).

One of the most widely used experimental plans is
that of the factorial design, or some variation of it (two
of the techniques in the following section utilize it).
By multiple regression techniques, the relationships

between variables, then, are generated from experi-
mental data, and the resulting equations are the basis
of the optimization. These equations define the re-
sponse surface for the system under investigation.

V. APPLIED OPTIMIZATION METHODS

There are many methods that can be, and have been,
used for optimization, classic and otherwise. These
techniques are well documented in the literature of
several fields. Deming and King [6] presented a general
flowchart (Fig. 4) that can be used to describe general
optimization techniques. The effect on a real system of
changing some input (some factor or variable) is ob-
served directly at the output (one measures some
property), and that set of real data is used to develop
mathematical models. The responses from the pre-
dictive models are then used for optimization. The first
two methods discussed here, however, omit the math-
ematical-modeling step; optimization is based on out-
put from the real system.

A. Evolutionary Operations

One of the most widely used methods of experimental
optimization in fields other than pharmaceutical tech-
nology is the evolutionary operation (EVOP). This
technique is especially well suited to a production si-
tuation. The basic philosophy is that the production
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Fig. 4 Flowchart for optimization.
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procedure (formulation and process) is allowed to
evolve to the optimum by careful planning and con-
stant repetition. The process is run in a way such that it
both produces a product that meets all specifications
and (at the same time) generates information on pro-
duct improvement.

By this method the experimenter makes a very small
change in the formulation or process but makes it so
many times (i.e., repeats the experiment so many times)
that he or she can determine statistically whether the
product has improved. If it has, the experimenter makes
another change in the same direction many times and
notes the results. This continues until further changes do
not improve the product or perhaps become detrimen-
tal. The experimenter then has the optimum—the peak.

In an industrial process, this large number of ex-
periments is usually not a problem, since the process
will be run over and over again. The application of this
technique to tablets has been advocated by Rubinstein
[7]. It has also been applied to an inspection system for
parenteral products [8].

In most pharmaceutical situations, however, there is
often insufficient latitude in the formula or process to
allow the necessary experimentation. The pharmaceu-
tical industry is subject to regulatory constraints that
make EVOP impossible to employ in validated
production processes and, therefore, impractical and
expensive to use. Moreover, EVOP is not a substitute
for good laboratory-scale investigation and, because of
the necessarily small changes utilized, is not particu-
larly suitable to the laboratory. In pharmaceutical
development, more efficient methods are desired.

B. The Simplex Method

The simplex approach to the optimum is also an ex-
perimental method and has been applied more widely
to pharmaceutical systems. Originally proposed by
Spendley et al. [9], the technique has even wider appeal
in areas other than formulation and processing.
A particularly good example to illustrate the principle
is the application to the development of an analytical
method (a continuous flow analyzer) by Deming and
King [6].

A simplex is a geometric figure that has one more
point than the number of factors. So, for two factors or
independent variables, the simplex is represented by a
triangle. Once the shape of a simplex has been de-
termined, the method can employ a simplex of fixed
size or of variable sizes that are determined by com-
paring the magnitudes of the responses after each
successive calculation. Figure 5 represents the set of
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simplex movements to the optimum conditions using a
variable size technique.

The two independent variables (the axes) show the
pump speeds for the two reagents required in the
analysis reaction. The initial simplex is represented by
the lowest triangle; the vertices represent the spectro-
photometrie response. The strategy is to move toward
a better response by moving away from the worst re-
sponse. Since the worst response is 0.25, conditions are
selected at the vortex, 0.6, and, indeed, improvement is
obtained. One can follow the experimental path to the
optimum, 0.721.

For pharmaceutical formulations, the simplex
method was used by Shek et al. [10] to search for an
optimum capsule formula. This report also describes
the necessary techniques of reflection, expansion, and
contraction for the appropriate geometric figures. The
same laboratories applied this method to study a so-
lubility problem involving butoconazole nitrate in a
multicomponent system [11].

Bindschaedler and Gurny [12] published an adap-
tation of the simplex technique to a TI-59 calculator
and applied it successfully to a direct compression ta-
blet of acetaminophen (paracetamol). Janeczek [13]
applied the approach to a liquid system (a pharma-
ceutical solution) and was able to optimize physical
stability. In a later article, again related to analytical
techniques, Deming points out that when complete
knowledge of the response is not initially available, the
simplex method is probably the most appropriate type
[14]. Although not presented here, there are sets of rules
for the selection of the sequential vertices in the pro-
cedure, and the reader planning to carry out this type of
procedure should consult appropriate references.

C. The Lagrangian Method

This optimization method, which represents the
mathematical techniques, is an extension of the classic
method and was the first, to our knowledge, to be
applied to a pharmaceutical formulation and proces-
sing problem. Fonner et al. [15] chose to apply this
method to a tablet formulation and to consider two
independent variables. The active ingredient, phenyl-
propanolamine HCI, was kept at a constant level, and
the levels of disintegrant (corn starch) and lubricant
(stearic acid) were selected as the independent vari-
ables, X; and X,. The dependent variables include
tablet hardness, friability, volume, in vitro release rate,
and urinary excretion rate in human subjects.

This technique requires that the experimentation be
completed before optimization so that mathematical



500

717 0,716

400 }-
2
[ 5
-y
=%
2 300
ju
o
ar
(=
[=]
'u‘a
L
& 200 -
8
e

100

0.2%
0 I i i
o] 100 200 300

Ammanium ion pump speed

500

Fig. 5 The simplex approach to optimization. Response is spectrophotometric reading at a given wavelength. (From Ref. 6.)

models can be generated. The experimental design here
was a full 3? factorial, and, as shown in Table 1, nine
formulations were prepared. Polynomial models rela-
ting the response variables to the independent variables
were generated by a backward stepwise regression
analysis program. The analyses were performed on a
polynomial of the form

Table 1 Tablet Formulations

y = By + BiX\ + By X2 + B3X7 + B4X3 + BsX1 X,

+ BsX1 X5 + Bi X Xy + Bs X1 X3

3)

and the terms were retained or eliminated according to
standard stepwise regression techniques. In Eq. (3), y
represents any given response and B; represents the
regression coefficient for the various terms containing

Ingredient per tablet (mg)

Formulation no. Phenylpropanolamine HCl1 Dicalcium phosphate - 2H,O Starch Stearic acid
1 50 326 4 (1%) 20 (5%)
2 50 246 84 (21%) 20

3 50 166 164 (41%) 20

4 50 246 4 100 (25%)
5 50 166 84 100

6 50 86 164 100

7 50 166 4 180 (45%)
8 50 86 84 180

9 50 6 164 180

Source: Ref. 15.
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levels of the independent variables. One equation is
generated for each response or dependent variable.

A graphic technique may be obtained from the
polynomial equations, as represented in Fig. 6. Figure 6a
shows the contours for tablet hardness as the levels of
the independent variables are changed. Figure 6b
shows similar contours for the dissolution response,
ts0v. If the requirements on the final tablet are that
hardness be 8-10 kg and fspe, be 20-33 min, the fea-
sible solution space is indicated in Fig. 6¢c. This has
been obtained by superimposing Fig. 6a and b, and
several different combinations of X and X, will suffice.

Slightly different constraints are used to illustrate
the mathematical technique. In this example, the con-
strained optimization problem is to locate levels of
stearic acid (X7) and starch (X;) that minimize the time
of in vitro release (y,) such that the average tablet
volume ( y4) did not exceed 9.422 cm” and the average
friability (y3) did not exceed 2.72%.

To apply the Lagrangian method, this problem
must be expressed mathematically as follows:

Minimize y, = F>(X1, X2) 4)
such that

y3=f3(X1,X,) <272 (5)

ya = Fy(X1,X5) <0422 (6)
and

5<X <45 (7)

1< X, <4l (8)

Equations (7) and (8) serve to keep the solution within
the experimental range.

The foregoing inequality constraints must be con-
verted to equality constraints before the operation be-
gins, and this is done by introducing a slack variable ¢,
for each. The several equations are then combined into a
Lagrange function F, and this necessitates the intro-
duction of a Lagrange multiplier, 4, for each constraint.

Then, following the appropriate steps (i.e., partial
differentiation of the Lagrange function) and solving
the resulting set of six simultaneous equations, values
are obtained for the appropriate levels of X and X», to
yield an optimum in vitro time of 17.9 mm (#59¢,). The
solution to a constrained optimization program may
depend heavily on the constraints applied to the sec-
ondary objectives.

0A technique called sensitivity analysis can provide
information so that the formulator can further trade
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off one property for another. For sensitivity analysis
the formulator solves the constrained optimization
problem for systematic changes in the secondary ob-
jectives. For example, the foregoing problem restricted
tablet friability, ys, to a maximum of 2.72%. Figure 7
illustrates the in vitro release profile as this constraint
is tightened or relaxed and demonstrates that sub-
stantial improvement in the #5900, can be obtained up to
about 1-2%. Subsequently, the plots of the in-
dependent variables, X; and X, can be obtained as
shown in Fig. 8. Thus the formulator is provided with
the solution (the formulation) as he changes the fria-
bility restriction.

The several steps in the Lagrangian method can be
summarized as follows:

1. Determine objective function.
Determine constraints.
3. Change inequality constraints to equality con-

straints.
4. Form the Lagrange function, F:
a.One Lagrange multiplier A for each
constraint
b. One slack variable ¢ for each inequality
constraint

5. Partially differentiate the Lagrange function for
each variable and Set derivatives equal to zero.

6. Solve the set of simultaneous equations.

7. Substitute the resulting values into the objective
functions.

Although many steps in the procedure may be carried
out by computer, the application requires significant
mathematical input from the person involved.

Buck et al. [16] expanded on the previous work
and proposed that the statistical design technique can
be incorporated into an overall management philo-
sophy for proposed product design. The authors
discussed four phases in this philosophy, which are
defined as (a) a preliminary planning phase, (b) an
experimental phase, (¢) an analytical phase, and (d) a
verification phase. They include case studies of a ta-
blet design and a suspension design to illustrate the
efficient and effective procedures that might be ap-
plied. Representation of such analysis and the avail-
able solution space is shown for the suspension in
Figs. 9 and 10.

D. Search Methods

In contrast with the mathematical optimization meth-
ods, search methods do not require continuity or
differentiability of the function—only that it be
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computable. In these methods the response surfaces, as
defined by the appropriate equations, are searched by
various methods to find the combination of in-
dependent variables yielding the optimum.

Although the Lagrangian method was able to han-
dle several responses or dependent variables, it was
generally limited to two independent variables. A
search method of optimization was also applied to a
pharmaceutical system and was reported by Schwartz
et al. [17]. It takes five independent variables into

a3 |

a0 |

1 j 1 | 4 1 N | 1
1 2 3 4 5 6 7 -3
MAXIMUM ACCEPTABLE FRIABILITY, % wt. loss

Fig. 8 Optimizing values of stearic acid and starch as a
function of restrictions on tablet friability: (A) percent starch;
(B) percent stearic acid. (From Ref. 15.)
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account and is computer-assisted. It was proposed that
the procedure described could be set up such that
persons unfamiliar with the mathematics of optimiza-
tion and with no previous computer experience could
carry out an optimization study.

The system selected here was also a tablet formu-
lation. The five independent variables or formulation
factors selected for this study are shown in Table 2.
The dependent variables are listed in Table 3. Since
each dependent variable is considered separately, any
number could have been included.

The experimental design used was a modified
factorial and is shown in Table 4. The fact that there
are five independent variables dictates that a total of
27 experiments or formulations be prepared. This
design is known as a five-factor, orthogonal, central,
composite, second-order design [3]. The first 16 for-
mulations represent a half-factorial design for five
factors at two levels, resulting in 1 x2° =16 trials.
The two levels are represented by +1 and -1,
analogous to the high and low values in any two-
level factorial design. For the remaining trials, three
additional levels were selected: zero represents a base
level midway between the aforementioned levels,
and the levels noted as 1.547 represent extreme (or
axial) values.

The translation of the statistical design into physical
units is shown in Table 5. Again the formulations were
prepared and the responses measured. The data were
subjected to statistical analysis, followed by multiple
regression analysis. This is an important step. One is
not looking for the best of the 27 formulations, but the
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“global best.” The type of predictor equation used
with this type of design is a second-order polynomial
of the following form:

Y=ay+aX)+- +asXs +anXs + -+ assX2
+apXiXo+apnXiXs+ -+ assXaXs 9)

Table 2 Formulation Variables (Independent)

X, Diluent ratio

X Compressional force
X3 Disintegrant level
X4 Binder level

Xs Lubricant level

Table 3 Response Variables (Dependent)

Y, Disintegration time
Y, Hardness

Y; Dissolution

Yy Friability

Ys Weight uniformity
Ys Thickness

Y, Porosity

Ys Mean pore diameter

Copyright © 2002 Marcel Dekker, Inc.

where Y is the level of a given response, a;; the regres-
sion coefficients for second-order polynomial, and X;
the level of the independent variable. The full equation
has 21 terms, and one such equation is generated for
each response variable. The usefulness of the equation
is evaluated by the R? value, or the index of determi-
nation, which is an indication of the fit. In most cases
the fit was satisfactory, and the equations were used.
One possible disadvantage of the procedure as it is set
up is that not all pharmaceutical responses will fit a
second-order regression model. In fact, further analysis
was attempted, and the results indicated that one of the
responses was adequately described by a modified
third-order model (inter-action terms were eliminated.)
However, a significant advantage of the digital system
utilized is that it can be modified to accept other
mathematical models—another order polynomial, any
other empirical relationship, or a mathematical model
based on first principles.

For the optimization itself, two major steps were
used: the feasibility search and the grid search. The
feasibility program is used to locate a set of response
constraints that are just at the limit of possibility. One
selects the several values for the responses of interest
(i.e., the responses one wishes to constrain), and a search
of the response surface is made to determine whether a
solution is feasible. For example, the constraints in
Table 6 were fed into the computer and were relaxed one



Table 4 Experimental Design

Factor level in experimental units

Trial Xl X2 X3 X4 Xs

1 —1 -1 -1 —1 1
2 1 -1 —1 -1 -1
3 -1 1 -1 -1 -1
4 1 1 -1 —1 1
5 -1 -1 1 -1 -1
6 1 -1 1 -1 1
7 -1 1 1 —1 1
8 1 1 1 -1 -1
9 -1 -1 -1 1 -1
10 1 -1 -1 1 1
11 —1 1 -1 1 1
12 1 1 -1 1 -1
13 -1 -1 1 1 1
14 1 —1 1 -1
15 -1 1 1 1 -1
16 1 1 1 1 1
17 —1.547 0 0 0 0
18 1.547 0 0 0 0
19 0 —1.547 0 0 0
20 0 1.547 0 0 0
21 0 0 —1.547 0 0
22 0 0 1.547 0 0
23 0 0 0 —1.547 0
24 0 0 0 1.547 0
25 0 0 0 0 —1.547
26 0 0 0 0 1.547
27 0 0 0 0 0

Source: Adapted from Ref. 17.

Table 5 Experimental Conditions

at a time until a solution was found. The first feasible
solution was found at disintegration time=35 min,
hardness = 10 kg, and dissolution=100% at 50 min:
This program is designed so that it stops after the first
possibility; it is not a full search. The formulation
obtained may be one of many possibilities satisfying the
constraints.

The next step, the grid search, is essentially a brute-
force method in which the experimental range is
divided into a grid of specific size and methodically
searched. The method is called an exhaustive grid
search. From an input of the desired criteria, the
program prints out all points (formulations) that sa-
tisfy the constraints.

The purpose of the preliminary step of the feasibility
program is simply to limit the number of solutions in
the grid search. In addition to providing a printout of
each formulation, the grid search program also gives
the corresponding values for the responses. At this
point, the experimenter can trade off one response for
another, and the fewer possibilities there are, the easier
the job. Thus, the best or most acceptable formulation
is selected from the grid search printout to complete
the optimization.

The two steps just discussed require that one or more
responses be constrained, and a question may arise as
to which ones to select. The formulator may have cer-
tain basic constraints, such as a minimum hardness
value, but it is nevertheless important to know which
property or properties can be used to distinguish be-
tween the available choices. Generally, this is done by
an educated guess, based on experience with the system
and with pharmaceutical systems in general.

Factor —1547eu —leu Base0 +1leu +1.547eu
X = Calcium phosphate/ 24.5/55.5  30/50 40/40  50/30 55.5/24.5
lactose ratio
(1 eu=10 mg)
X, =compression pressure 0.25 0.5 1 L.5 1.75
(1 eu=0.5 ton)
X3 =Corn starch disintegrant 2.5 3 4 5 5.5
(1 eu=1 mg)
X, = Granulaitng gelatin 0.2 0.5 1 1.5 1.8
(1 eu=0.5 mg)
X5=Magnesium stearate 0.2 0.5 1 1.5 1.8
(1 eu=0.5 mg)

Source: Ref. 17.
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Table 6 Specifications for Feasibility Search

Variable Constraint Experimental range®
Disintegration time  1(1)° 1.33-30.87
(min)
3(2)
503)
Hardness 12(1)° 3.82-11.60
(kg)
10(2)
8(3)
Dissolution 100(1)° 13.30-89.10
(% at 50 min)
90(2)
80(3)

It is possible to request values for a response that are more desirable
than any data obtained in the set of 27 experiments.
5(1) = first choice.

However, there is a mathematical method for se-
lecting those variables that best distinguish between
formulations—those variables that change most
drastically from one formulation to another and that
should be the criteria on which one selects constraints.
A multivariate statistical technique called principal
component analysis (PCA) can effectively be used to
answer these questions. PCA utilizes a variance-cov-
ariance matrix for the responses involved to determine
their interrelationships. It has been applied successfully
to this same tablet system by Bohidar et al. [18].

In addition to the programs to select the optimum
discussed previously, graphic approaches are also
available and graphic output is provided by a plotter
from computer tapes. The output includes plots of a
given response as a function of a single variable (Fig. 11)
or as a function of all five variables (Fig. 12). The ab-
scissa for both types is produced in experimental units,
rather than physical units, so that it extends from —1.547
to +1.547 (see Table 5). Use of the experimental units
allows the superpositioning of the single plots (see Fig.
11) to obtain the composite plots (see Fig.12).

An infinite number of these plots is possible, since
for each curve represented, four of the five variables
must remain constant at some level. This is analogous
to a partial derivative situation, and the slope of any
one graph does indeed represent a partial derivative of
the response for one of the independent variables. It
will change, depending on the level of the other four
variables.

Contour plots (Fig. 13) are also generated in the same
mariner. The specific response is noted on the graph,
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and, again, the three fixed variables must be held at some
desired level. For the contour plots shown, both axes are
in experimental units (eu). This technique is automated
so that a formulator with no previous computer ex-
perience and no familiarity with the mathematics of
optimization can follow the steps necessary to complete
such a study. Those steps may be summarized as follows:

1. Select a system.

2. Select variables:
a. Independent
b. Dependent

3. Perform experiments and test product.
4. Submit data for statistical and regression ana-
lysis.
5. Set specifications for feasibility program.
6. Select constraints for grid search.
7. Evaluate grid search printout.
8. Request and evaluate:.
a. “Partial derivative” plots, single or composite
b. Contour plots
g
8.
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Fig. 11 Computer-generated plots for a single variable.
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The last step, which concerns the graphic techniques,
may be requested at any time after the regression
analysis has been performed and will probably be ap-
propriate at several different stages of a project.

The key to successful application of the experi-
mental optimization techniques is based on adequate
experimental design. A system based on this experi-
mental design (see Table 4), but utilizing a special
analog computer for analysis, was presented by Clax-
ton [19] as the Firestone Computer/Optimizer.

This approach demonstrates that use of only a
part of this procedure will represent a step forward
over the trial-and-error method of formula and
process modification. It is not always necessary to
carry these studies to completion. For example, once
the designed experimentation has been completed,
one might be able to accomplish the task simply by
analyzing the graphs; therefore, further mathematical
treatment or search programs will not be necessary.
Some of the examples in the following section illus-
trate this fact.
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Fig. 12 Computer-generated composite plots.

E. Canonical Analysis

Canonical analysis, or canonical reduction, is a tech-
nique used to reduce a second-order regression equa-
tion, such as Eq. (9), to an equation consisting of a
constant and squared terms, as follows:

Y= Yo+ Wi+ W5+ W3+ (10)

The technique allows immediate interpretation of the
regression equation by including the linear and in-
teraction (cross-product) terms in the constant term
(Yo or stationary point), thus simplifying the sub-
sequent evaluation of the canonical form of the re-
gression equation. The first report of canonical
analysis in the statistical literature was by Box and
Wilson [37] for determining optimal conditions in
chemical reactions. Canonical analysis, or canonical
reduction, was described as an efficient method to
explore an empirical response surface to suggest areas
for further experimentation. In canonical analysis or
canonical reduction, second-order regression equations
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Fig. 12 (continued).

are reduced to a simpler form by a rigid rotation and
translation of the response surface axes in multi-
dimensional space, as shown in Fig. 14 for a two-
dimension system. This mathematical technique,
which makes use of eigenvalues and eigenvectors, is
based in matrix algebra and is described in textbooks
on response surface methodology [38,39].

A reported application of canonical analysis in-
volved a novel combination of the canonical form of
the regression equation with a computer-aided grid
search technique to optimize controlled drug release
from a pellet system prepared by extrusion and
spheronization [28,29]. Formulation factors were used
as independent variables, and in vitro dissolution was
the main response, or dependent variable. Both a
minimum and a maximum drug release rate was pre-
dicted and verified by preparation and testing of the
predicted formulations. Excellent agreement between
the predicted values and the actual values was evident
for the four-component pellet system in this study.
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VI. OTHER APPLICATIONS

In the last few years, optimization techniques have be-
come more widely used in the pharmaceutical industry.
Some of these have appeared in the literature, but a far
greater number remain as ‘‘in-house” information,
using the same techniques indicated in this chapter, but
with modifications and computer programs specific to
the particular company. An excellent review of the
application of optimization techniques in the pharma-
ceutical sciences was published in 1981 [20]. This covers
not only formulation and processing, but also analysis,
clinical chemistry, and medicinal chemistry.

Designed experimentation, involving mostly some
type or modification of factorial design, has been used
to study many different types of formulation problems.
These include a pharmaceutical suspension [21], a
controlled-release tablet formulation [22], and a tablet-
coating operation [23]. In the latter case, Dincer and
Ozdurmus studied an enteric film coating and utilized
the steepest descent graphic method to select the
optimum.

Adaptation of the modified factorial techniques to
desktop computers has also been accomplished [24,
25]. Down et al. [25] presented this concept and applied
the programs to a tablet problem. The statistics in-
volved were presented in some detail. A similar design
was also used to study a high-performance liquid
chromatography (HPLC) analysis [26]. In an unusual
application, optimization techniques were even used to
study the formulation of a culture medium in the field
of virology [27].

Other applications of the previously described op-
timization techniques are beginning to appear reg-
ularly in the pharmaceutical literature. A literature
search in Chemical Abstracts on process optimization
in pharmaceuticals yielded 17 articles in the 1990-1993
time-frame. An additional 18 articles were found be-
tween 1985 and 1990 for the same narrow subject. This
simple literature search indicates a resurgence in the
use of optimization techniques in the pharmaceutical
industry. In addition, these same techniques have been
applied not only to the physical properties of a tablet
formulation, but also to the biological properties and
the in-vivo performance of the product [30,31]. In ad-
dition to the usual tablet properties the authors studied
the following pharmacokinetic parameters: (a) time of
the peak plasma concentration, (b) lag time, (c) ab-
sorption rate constant, and (d) elimination rate con-
stant. The graphs in Fig. 15 show that for the drug
hydrochlorothiazide, the time of the plasma peak
and the absorption rate constant could, indeed, be
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controlled by the formulation and processing variables
involved.

VII. COMPUTERS AND SYSTEMS

It is obvious that the use of computers will facilitate
the data analysis steps in the procedures discussed
and will be needed for any mathematical analysis or
search methods. In fact, a textbook has appeared
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describing the practical application of computer-aided
optimization and provides direction for the im-
plementation of these techniques to formulation [41].
Most of the examples presented have made use of
computers in some way, and a few were completely
performed by computer.

Several companies have adapted these experimental
analysis techniques to computer software, but have
kept the programs in-house. Representatives of a few



Fig. 14 Two-dimensional representation of the rigid rota-
tion and translation involved in canonical analysis.

have, in fact, presented data at various conferences
[24,32-34]. However, there are several commercially
available programs that may be bought or licensed
and several courses in experimentation address this
subject.

The interested reader might be alerted to courses
offered by the American Chemical Society, Dupont
Corporation, or the Foremost Corporation. Some of
these programs offer the use of statistical or response
surface software. Specific computer packages are also
available through Statistical Analysis Systems (SAS),
IBM, and RS/Discover (RS1), which are designed
for mainframe computers. The number of software
packages available for standard desk-top office com-
puters is large and is expected to increase. Several
software packages—eCHIP, XStat, JMP, and Design
Expert—are commonly used in the pharmaceutical
industry, but these titles do not provide a complete list
of available programs.

VIII. CONCLUDING REMARKS

As the list of applications illustrates, the techniques of
optimization are not limited to tablets or even to solids.
Any dosage form and any process should be amenable
to this type of experimentation and analysis. From the
most simple formulation to the most complicated one,
there are ingredient levels and processing steps that can
be varied, and any information on the result of such
variation should be useful to the formulator.

Properly designed experimentation and subsequent
analysis can not only lead to the optimum or most
desirable product and process, but, if carried far
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enough, can shed light on the mechanism by which the
independent variables affect the product properties.
There are appropriate statistical techniques involving
the use of selective regression analysis by which such
analyses can be carried out [35]. Because this technique
answers the question, “What independent variables
most affect each response studied?”’ the application to
selection of critical formulation and processing vari-
ables is obvious. This could provide supporting sta-
tistical evidence for the identification of critical
variables in today’s regulatory environment.

By appropriate analysis and generation of model
(regression) equations (which are continuous), the
formulator is able to select not the best of the for-
mulations experimentally prepared, but the best within
an experimental range; the optimum may be a com-
bination of ingredients that the formulator has never
prepared (and might never think to prepare). In the 30
years since the techniques of optimization were in-
troduced to the pharmaceutical literature, the number
of published studies on delivery systems has grown
exponentially. There are numerous examples of the use
of design of experiments, related statistical analysis,
response surface methodology, and other methods for
optimization in the recent literature. In many cases the
techniques are used to study the variables in a system,
rather than make any major changes.

Franz et al. [42] reviewed these techniques com-
pletely, along with statistical screening techniques and
other experimental methods, with an excellent list of
publications. A few selected publications from the re-
cent literature demonstrate the wide variety of for-
mulation and processing problems to which these
techniques can be applied and the varying methods
selected for optimization.

Porter et al. [43] applied the method to study the
process variables in the tablet-coating operation.
Remon et al. [44] studied high shear granulation and
microwave drying to minimize dust production along
with other responses using design of experiments,
specifically a central composite design. Pujari and
Chandra [45] reported on riboflavin production,
optimizing the culture growth media via Plackett-
Burmann screening methodology followed by factor-
ial design.

Wu et al. [46] used the approach of an artificial
neural network and applied it to drug release from
osmotic pump tablets based on several coating para-
meters. Gabrielsson et al. [47] applied several different
multivariate methods for both screening and optimi-
zation applied to the general topic of tablet formula-
tion: they included principal component analysis and
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factorial design. Marti-Mestres et al. [48] studied sub-
micron emulsions with sunscreens using simplex cen-
troid design. Shiromani and Clair [49] performed a
statistical comparison of high shear versus low shear
granulation using a common formulation and a central
composite design.

These techniques of optimization can be useful,
even if selecting the optimum is not the primary ob-
jective. The formulator may have no intention of
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drastically changing a given formulation. Many times a
very small change in processing or ingredient level can
dramatically improve a particular property. The use of
such information in “troubleshooting” situations has
been demonstrated [36].

The independent variables have been, or should
have been, selected by the formulator, and there is no
substitute for experience. Experience with the system
or with pharmaceutical systems in general can guide



X1=X2=43=0

106 92

81.514

TIME QOFf PLRASHMA LEVEL PERK.
7815 1

GF.??

45.38

(b

£
= M~ CORNSTARCH
o & - HAGNESIUM STEARATE
- + - PRESSURE
- -]
a
;‘_’d
o
z
P
o
(:-

30.00

1,22 -0.88 -0.54

_0.21 0.13 0.46 0.80 1.13

Xt1)

Fig. 15 (continued).

the formulator to select those variables most likely to
have an effect on those levels which are most practical.
The results of an optimization study, especially the
graphic output, can give direction for product
improvement—no matter why the improvement is
necessary or desirable.

Once experimental data have been collected and
relationships generated by regression analysis (or even
derived from first principles), the formulator has many
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options available for subsequent analysis, These need
not be restricted to mathematical techniques or to
elaborate computerized systems.

A side benefit of this designed type of experi-
mentation is its potential usefulness in product and
process validation. The subject of validation is of great
interest to those in the operations area, but if ap-
proached rationally, validation must begin in the
product development phase. The designs usually



selected lend themselves to the concept of processing
limits and ‘“‘challenge.” The resulting data can be ap-
plied to scale-up, can aid in the transfer of information
to the operations area, and should be the basis of the
protocol design for validation.

The emphasis, once again, is that appropriate sta-
tistical design is an important consideration. For a
formulator planning such a study, it should be noted
that the independent variables can be anything that he
or she can quantitate and control; and the dependent
variables can be anything that he or she can quantitate.
From the data resulting from the required number of
experiments, one is able to generate a mathematical
model to which the appropriate optimization techni-
que is applied (e.g., graphic, mathematical, or the
search method).

The final conclusion is the ultimate benefit: The
more the formulator knows about a system, and the
better that he or she can define it, the more closely it
can be controlled.
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